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Global Optimization on Funneling Landscapes?
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Abstract. Molecular conformation problems arising in computational chemistry require the global
minimization of a non-convex potential energy function representing the interactions of, for example,
the component atoms in a molecular system. Typically the number of local minima on the potential
energy surface grows exponentially with system size, and often becomes enormous even for relatively
modestly sized systems. Thus the simple multistart strategy of randomly sampling local minima
becomes impractical. However, for many molecular conformation potential energy surfaces the local
minima can be organized by a simple adjacency relation into a single or at most a small number
of funnels. A distinguished local minimum lies at the bottom of each funnel and a monotonically
descending sequence of adjacent local minima connects every local minimum in the funnel with
the funnel bottom. Thus the global minimum can be found among the comparatively small number
of funnel bottoms, and a multistart strategy based on sampling funnel bottoms becomes viable. In
this paper we present such an algorithm of the basin-hopping type and apply it to the Lennard–
Jones cluster problem, an intensely studied molecular conformation problem which has become a
benchmark for global optimization algorithms. Results of numerical experiments are presented which
confirm both the multifunneling character of the Lennard–Jones potential surface as well as the
efficiency of the algorithm. The algorithm has found all of the current putative global minima in the
literature up to 110 atoms, as well as discovered a new global minimum for the 98-atom cluster of a
novel geometrical class.

Key words: Global optimization, Lennard–Jones clusters, Basin-hopping, Energy landscape, Fold-
ing funnel, Molecular conformation

1. Introduction

1.1. SCOPE AND OUTLINE OF PRESENTATION

This paper describes the application of a new variant of the highly successful
basin-hopping algorithm of (Wales and Doye, 1997) to the Lennard–Jones (LJ)
microcluster problem, an important and intensively studied global optimization
problem. Section 1.2 provides a basic description and historical background of
the LJ problem, including a summary of the current state of knowledge concerning
global minima. Section 1.3 introduces some concepts related to the landscape of
the LJ potential energy function, particularly the organization of local minima into
‘monotonic sequence basins’ and ‘funnels’ on a graph structure induced by an
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adjacency relation relation between local minima. Section 2.1 is an overview of
the original basin-hopping algorithm as a Metropolis Monte-Carlo search (similar
to simulated annealing, but with a constant temperature parameter) combined with
a local minimization at each step. The new basin-hopping variant is introduced in
Section 2.2 by setting the temperature parameter to zero. This in essence changes
the Metropolis acceptance procedure of occasionally accepting uphill steps to a
rule that only accepts downhill moves, thus producing a monotonic sequence of
local minima which terminates in a funnel bottom. After sequence termination, a
new sequence is initialized from a fresh random starting local minimum. Thus the
new variant can be viewed as a multistart algorithm that samples funnel bottoms.
In contrast, the original algorithm produces a single long sequence which samples
many local minima and relies on the Metropolis acceptance criterion to escape
from funnel bottoms.

Sections 2.3 and 2.4 describe a numerical implementation of the new variant and
some extensive computational results, respectively. Comparison with the original
algorithm reveals quite distinctive behaviors, particularly on the more difficult
cases where the new variant has a marked advantage. Surprisingly, in light of
the considerable analysis the problem has received from chemists as well as the
extensive numerical searches conducted previously with many different types of al-
gorithms, the new variant has found a new global minimum of a novel geometrical
class for the 98-atom LJ cluster.

The paper concludes in Section 3 with a summary of the performance and fea-
ture characteristics of the new algorithm in comparison with the original. Different
types of energy landscapes where each might be preferable are identified.

1.2. THE LJ MICROCLUSTER PROBLEM

Molecular conformation problems are global optimization problems in computa-
tional chemistry where the objective function is an energy function modeling the
interactions between atoms or other small sub-units of a molecule. This function
can represent either a potential energy arising from the forces between atoms,
or a thermodynamic ‘free energy’, which also includes temperature and entropy
dependencies. Here we will be primarily concerned with the simpler potential
energy case, which is more amenable to analytical models. We note that at zero
temperature the distinction between potential and free energy vanishes.

The global minimum of an appropriate energy function is of interest because it
is believed to determine thenative conformationor most probable configuration of
the molecule. Other conformations corresponding to local minima can be viewed
as lower probability alternatives in an equilibrium among various conformations,
or sometimes as intermediates in a dynamical process which proceeds from a high
energy starting conformation to the global minimum. This latter viewpoint is often
taken for theprotein folding problem, a molecular conformation problem of great
scientific importance that is concerned with finding the 3-dimensional structure of
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Figure 1. The Lennard–Jones pair potential functions.

a protein given a one-dimensional sequence of component amino acids. A compre-
hensive review oriented toward applied mathematicians can be found in (Neumaier,
1997).

A remarkably simple molecular conformation model that has attracted consider-
able scientific, mathematical, and computational research is theLJ cluster problem.
LJ clusters consist of identical atoms that interact pairwise via the LJ pair potential
defined for two atomsi andj by

u(rij ) = r−12
ij − 2r−6

ij (1)

whererij is the Euclidean distance‖xi−xj‖ between the atomic coordinate vectors
xi, xj ∈ R3. As seen in Figure 1, the pair potentialu(r) is unimodal and has
been scaled so that the minimum occurs atr = 1 with corresponding potential
energyu(1) = −1. ForN > 2 atoms, pairwise additivity is assumed so the cluster
potential energy is given by

E(X) =
∑
j>i

u(rij ) (2)

whereX = (x1, . . . , xN) is the 3N-dimensional vector of atomic coordinates.
The LJ cluster potential energy function is believed to be a reasonably accurate

model of low temperature clusters of heavy rare gas atoms such as argon or xenon,
physical systems which are accessible to experimental measurement. Thus results
from global optimization computations can be compared in various respects with
laboratory measurements. LJ pair potential terms are also an important component
in many protein folding model energy functions, and the LJ cluster problem can be
viewed as a test problem for algorithms potentially applicable to protein folding.
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These factors, combined with the simplicity of the formulation and computa-
tional ease of implementation of the LJ cluster model, have led to considerable
interest and a substantial literature over the past thirty years from both the chem-
ical physics and global optimization communities. Recent reviews can be found
in Wales and Scheraga (1999) and Leary (1997). The LJ cluster problem has also
become a computational benchmark for testing and comparison of a wide variety
of global optimization methods such as simulated annealing (Wille, 1987), genetic
algorithms (Niesse and Mayne, 1996; Deaven et al., 1996; Wolf and Landman,
1998), smoothing and hypersurface deformation techniques (Kostrowicki et al.,
1991; Pillardy and Piela, 1995), lattice methods (Northby, 1987; Xue, 1994b),
growth sequence analysis (Hoare and Pal, 1971; Leary, 1997), tunneling (Barron
et al., 1996), and basin-hopping (Wales and Doye, 1997). An online list of the
best current putative LJ global minima in the rangeN 6 150 is maintained in
the Cambridge Cluster Database (CCD) at http://brian.ch.cam.ac.uk (Wales et al.,
URL).

Clusters in this range are often referred to asmicroclusters. Microclusters are
characterized by a large number of surface atoms relative to interior atoms; hence
bulk interior effects do not dominate and microclusters exhibit strikingly different
overall structures than bulk samples of the same atomic composition. For example,
bulk solid argon and xenon exhibit a crystalline structure based on a face-centered
cubic (fcc) lattice, whereas most LJ microcluster global minima are based on a non-
crystalline icosahedral structural motif known as a Mackay icosahedron (Mackay,
1962), first systematically explored by (Northby, 1987) in the context of LJ micro-
clusters. A few LJ microcluster global minima (LJ75, LJ76, LJ77, and LJ102, LJ103,
LJ104) are based on another non-crystalline structure known as a Marks decahedron
(Doye et al., 1995), which is derived from a pentagonal bipyramid. One notable fcc
global minimum, LJ38, assumes the shape of a truncated octahedron (Barron et al.,
1996), and recently a new global minimum atN = 98 with unusual tetrahedral
symmetry and a partly fcc interior has been found (Leary and Doye, 1999) with
the new algorithm described here. Pictures, energies, and coordinate files for all of
these structures can be found in the CCD.

1.3. LANDSCAPE OF THE LJ MICROCLUSTER PROBLEM

Although deceptively simple in its algebraic description, the LJ potential energy
surface (PES) defined by Equations 1 and 2 is extremely complex in terms of the
number of local minima. Current data and theory (Tsai and Jordan, 1993; Stillinger,
1999) suggest that the number of energetically distinct (e.g., excluding permuta-
tional isomers) local minima follows a simple exponential growth law, leading to
estimates of more than 1040 local minima forN = 100.

Given a local minimization procedure, we can associate with each local min-
imumXi ∈ R3N acatchment basinC(Xi) ⊆ R3N such that the local minimization
algorithm initiated at any pointX ∈ C(Xi) converges toXi. Together, the catch-
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ment basins partition configuration space. The simplemultistart global optimiza-
tion strategy defines a compact subset of configuration space, such as a ball or box
of suitable size centered at the origin, that contains all bound configurations of in-
terest. This region is then sampled uniformly, and the local minimization algorithm
is initiated at each sample point to arrive at the corresponding local minimum. The
putative global minimum is selected as the best local minimum found among the
samples.

For molecular conformation problems with exponential local minima growth
curves, the multistart strategy quickly becomes overwhelmed asN increases. This
is essentially the observation behind the ‘Levinthal Paradox’ (Neumaier, 1997)
for the protein folding problem. Naturally occurring proteins with approximately
10300 local minima are observed to reliably move from an unfolded state to the
folded native conformation in times typically less than one second. However, it
is known on physical grounds that transitions between successive conformations
require at least 10−15 seconds. Thus significant fractions of the conformation space
cannot be sampled in times consistent with the observed folding rate. The ‘paradox’
can be resolved by the current view that protein folding proceeds not by random
sampling, but rather by following any one of many possible energetically descend-
ing sequences of conformations, all of which converge upon the global minimum.
Thus the process can be described in terms of a ‘folding funnel’ (Bryngelson et al.,
1995), in which every conformation is connected to the global minimum by at least
one chain of descending local minima.

It has become common to describe the PES as a landscape with topograph-
ical features associated with critical points of the potential function. Particular
emphasis is placed on local minima and first order (exactly one negative Hessian
eigenvalue) saddle points, also known astransition pointsby computational chem-
ists since such points typically lie on the boundary between adjacent catchment
basins on the most probable pathway for a conformational change from one local
minimum to the other. Larger scale groupings of local minima intomonotonic se-
quence basinsandfunnelson the landscape can be defined in terms of connectivity
via monotonic sequences, as described below.

The set of transition points defines an adjacency relation between the associated
pairs of local minima and hence a graph with local minima as nodes and transition
points as arcs. We will call this the transition point landscape graph to distinguish
it from the landscape graph induced by other possible adjacency relations between
local minima, such as simple proximity inR3N . A (descending)monotonic se-
quenceof local minima on a landscape graph has the defining property that each
successive node is adjacent to its predecessor and lower in energy. Clearly every
monotonic sequence on a finite landscape graph must terminate at a distinguished
botttom nodeb∗ from which no further descent is possible. Note there may be more
than one bottom node on the graph.

If there is only one bottom node, then the entire landscape graph can be re-
garded, as in the idealized protein folding funnel case, as a ‘funnel’ where every
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monotonic sequence started from any local minimum must terminate at the global
minimum. More general landscapes, however, may have several or even many bot-
tom nodes. However, following monotonic sequences to bottom nodes may be a
viable global optimization strategy as long as the number of bottom nodes remains
manageable and the difficulty of generating the monotonic sequences is not too
great. This is in fact the strategy adopted by the algorithm introduced in this paper
for the LJ microcluster problem.

In the case of landscape graphs with more than one bottom node, each such node
b∗ defines two subgraphs, amonotonic sequence basin(Berry and Breitengraser-
Kunz, 1995) and afunnel. (Note the distinction between a monotonic sequence
basin, which is a subgraph of the landscape graph, and a catchment basin, which is
a subset ofR3N .) The monotonic sequence basin is the set of local minima and arcs
which lie on at least one monotonic sequence that terminates atb∗. Thus a local
minimum, particularly if it is relatively high on the landscape graph, may belong
to more than one monotonic sequence basin. The funnel is the subgraph of the
monotonic sequence basin, usually lying near the bottom, such thatall monotonic
sequences initiated from a local minimum in the funnel terminate atb∗. Thus a
local minimum may belong to at most one funnel, and it makes equal sense to
refer tob∗ as a funnel bottom or a monotonic sequence basin bottom – we will use
the funnel bottom terminology. The distinction between funnels and monotonic
sequence basins disappears when there is only one bottom on the landscape graph.
However, the LJ microcluster problem displays energy landscapes with multiple
funnel bottoms. Particularly for the larger LJ microclusters, a randomly selected
starting local minimum usually belongs to many monotonic sequence basins, and
a monotonic sequence typically takes several steps before entering a funnel.

Although Berry and Breitengraser-Kunz (1995) defined monotonic sequence
basins using sequences in which adjacent members share a common transition
point, the concept is equally applicable for any adjacency relation. Both variants
of the basin-hopping algorithm presented in the next section use an adjacency
relation implicitly defined by proximity in 3N-dimensional space, thus avoiding
the computational difficulties of computing transition points in high-dimensional
spaces. It should be noted that large scale organizational features of landscapes
such as monotonic sequence basins and funnels depend explicitly on the adjacency
relation used, while the simpler point features defined directly by critical points of
E(X) obviously do not.

2. The Monotonic Sequence Basin-Hopping Algorithm

2.1. BASIN-HOPPING AND THE PLATEAU TRANSFORMATION

Simulated annealing and related methods such as Monte Carlo search for the global
minimization ofE(X) operate on as simple perturbation-conditional acceptance
scheme. The current pointX is conditionally succeeded by a perturbed pointY =
X+S, whereS is a random perturbation, depending on an acceptance rule (usually
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the Metropolis criterion described below) based on the objective function change
E(Y ) − E(X). In simulated annealing, the acceptance rule also depends on a
‘temperature’ parameterT which is lowered according to an annealing schedule
as the search proceeds. In contrast, Monte Carlo search treatsT as an adjustable
algorithmic parameter that remains constant for any given search – i.e. no annealing
is done.

Li and Scheraga (1987) proposed an algorithm called ‘Monte Carlo-minimiza-
tion’ (MCM) which employs a Monte Carlo search in which a local minimization
is performed at each step before the Metropolis acceptance rule is applied. Thus
acceptance is based on the function changeE(Ymin) − E(Xmin) whereXmin and
Ymin are the local minima obtained by applying the local minimization procedure
starting atX andY , respectively. If the acceptance criterion is satisfied, the MCM
algorithm resets the accepted point (and starting point for the next perturbation) to
Ymin from Y , so a sequence of local minima is produced.

Xue applied a similar idea (without resetting) in a simulated annealing context,
calling it ‘two-level simulated annealing’ (Xue, 1993; Xue, 1994a) to emphasize
that the perturbation is done at one level and the acceptance rule applied at a second
level after a local minimization has been performed. He used the procedure to
search icosahedral lattices for global minima of LJ clusters.

Wales and Doye (1997) observed that use of a minimization procedure before
applying the acceptance criterion is equivalent to searching a transformed objective
function, where the transformation is the operation of applying the local minimiza-
tion procedure to the original function at each point in its domain. They introduced
the term ‘basin-hopping’ to describe the general class of algorithms that search the
transformed ‘plateau’ energy functionP(X), where

P(X) = E(Xmin) (3)

on the catchment basinC(Xmin) surrounding each local minimumXmin. Thus the
landscape ofP(X) consists of a large number of interlocking plateaus of vari-
ous heights, each plateau covering a particular catchment basin. ‘Basin-hopping’
simply refers to the fact that members of this class of algorithms jump between
catchment basins.

As noted by Wales and Scheraga (1999), several algorithms that have been
applied to the LJ cluster problem, including the MCM approach of Wales and
Doye (1997), Xue’s two-level simulated annealing (Xue, 1993; Xue, 1994a), the
genetic algorithms of Deaven et al. (1996) and Wolf and Landman (1998) and the
‘exponential tunneling’ approach of Barron et al. (1996) can be viewed as members
of the basin-hopping family. However, for the remainder of this paper, we will
narrow the scope of ‘basin-hopping’ to refer to the MCM-based version described
immediately below and the new variant described in Section 2.2 Wales and Doye
(1997) very successfully applied the original MCM version to the Lennard–Jones
microcluster problem up toN = 110, obtaining all known putative global minima,
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including the Marks decahedra which had previously not been found by any global
optimization algorithm.

Starting from any given local minimum,Xk, a random perturbationS is pro-
posed and a local minimization is initiated at(Xk + S) to yield the local minimum
Y . If E(Y ) < E(Xk), this downhill step is accepted immediately and the algorithm
proceeds withXk+1 = Y as the next iterate. IfE(Y ) > E(Xk), the Metropolis
acceptance criterion is applied, i.e. the uphill step is accepted with probability

M = e(E(Xk)−E(Y ))/T (4)

by generating a random numberU uniformly in [0,1] and accepting the step if
U 6 M. HereT > 0 is a preselected ‘temperature’ parameter that remains fixed
(i.e., no annealing is done). If the step is rejected, new random perturbationsS are
generated until a step is accepted.

If the stepS is limited in range to nearby catchment basins, the algorithm per-
forms a downwardly biased random search over successive adjacent plateaus of
P(X). Equivalently, basin-hopping can be viewed as a downwardly biased random
walk on the landscape graph ofE(X) defined by the proximity adjacency relation
induced by the limited range ofS. Much of the power of the method derives from
the fact that, unlike simulated annealing or Monte Carlo methods applied toE(X)

such as described in Wille (1987), there are no energetic barriers for moving down-
hill between plateaus, and plateau crossing can easily take place at any point along
the plateau boundaries. Moreover, passage between catchment basins takes place
in a single step.

On the other hand, the MCM basin-hopping method can become trapped or
delayed by reaching a funnel bottom which is not the global minimum and is
separated from it by a high energy barrier. This indeed has been found to be the
case for the decahedral global minima LJ75, LJ76 and LJ77 (Doye et al., 1999b)
and, less severely, the LJ38 fcc truncated octahedron (Doye et al., 1999a). Here the
largest and most easily accessible funnels correspond to icosahedral forms, and
most random walks initially descend to an icosahedral funnel bottom. From there
they must ascend via a relatively low probability sequence of Metropolis steps to
gain sufficient altitude to have a chance of entering the proper funnel. A much
more favorable landscape occurs when the global optimum is at the bottom of a
wide, dominant funnel and/or the barriers between funnels are small. Then the
random walk has a good chance of entering the correct funnel on the initial descent
or rapidly exploring a number of funnels until the correct one is found without
significant delays to overcome large interfunnel barriers.

2.2. MONOTONIC SEQUENCE BASIN-HOPPING

An interesting variant of basin-hopping is obtained if the Metropolis acceptance
criterion is abandoned in favor of only accepting downhill steps. Note this is equiv-
alent to setting the temperature parameterT = 0. Then the random walk will
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follow a strictly descending sequence of local minima until a funnel bottom is
encountered. The original basin-hopping algorithm depends on the Metropolis ac-
ceptance criterion of occasionally accepting uphill steps to escape from funnel
bottoms. However, if the funnel bottom can be recognized, as for example, by the
lack of downward progress in a large number of move attempts, an alternate escape
mechanism is simply to restart the sequence from a fresh initial random local min-
imum. This simple idea forms the basis of themonotonic sequence basin-hopping
(MSBH) variant presented here. MSBH can be viewed as a multistart method that
samples funnel bottoms rather than local minima. Even if the number of local
minima on the landscape grows exponentially, the method can be quite efficient
if the funnel containing the global minimum has a sufficiently large ‘cross-section’
for entry from a random starting local minimum.

More formally, we can state the MSBH algorithm as follows:
Step 0 (initialization): Generate a random starting local minimumX0. Set the

consecutive rejection counterR to 0.
Step 1 (iteration): Starting with current local minimumXk, generate a random

perturbationS ∈ R3N and letY be the local minimum attained by
initiating the local minimization procedure at(Xk + S).
a) if E(Y ) < E(Xk), acceptXk+1 = Y as the next member of the
monotonic descent sequence. Reset the consecutive rejection counterR

to 0 and return to the beginning of Step 1.
b) If E(Y ) > E(Xk), rejectY and increment the consecutive rejection
counterR by 1. IfR 6 Rmax, maintainXk as the current local minimum
and go to the beginning of Step 1 for a new random step. IfR > Rmax

go to Step 2.
Step 2 (termination): Terminate the sequence with the currentXk as the funnel

bottom.
The overall algorithm simply adds as many restarts as desired, thus becoming a

multistart algorithm that samples funnel bottoms.

2.3. NUMERICAL IMPLEMENTATION

A numerical implementation of MSBH has been written in Fortran 77 and im-
plemented on a 16-processor parallel SUN 333 MHz Ultra 2 computer. Specific
implementation parameters and details are as follows:

a) The local minimization procedure is the PARTAN conjugate gradient al-
gorithm (Luenberger, 1969) using analytical gradients.

b) The sequence initialization step consists of generating a random 3N-dimen-
sional coordinate vectorX with independent identically distributed components
from a Gaussian distribution with meanµ = 0 and standard deviationσ = 0.25.
This distribution is spherically symmetric, with the root mean square distance
between atoms given by 31/2σ = 0.43, as compared with typical near neighbor
distances of approximately 1.0 for most local minima. Thus the initial configuration



376 R.H. LEARY

is somewhat compressed; it is then expanded to the starting local minimum by
application of the conjugate gradient algorithm. The details are not critical and any
other reasonable initialization procedure should work as well.

c) The random 3N-dimensional perturbation vectorS is generated with inde-
pendent identically distributed components from a Gaussian distribution with mean
µ = 0 and standard deviationσ = 0.21. The choiceµ = 0 is obvious since there is
no reason to bias the step in any direction. However, the choice ofσ is critical since
it determines the average step size. Ifσ is chosen too small, the step typically will
not escape from the catchment basin of the starting local minimum and no progress
will be made. Ifσ is chosen too large, there will be too many possible catchment
basins within range of the step. Such large steps will in effect randomly sample
large portions of conformation space, an unproductive strategy when the number
of local minima is huge. This is particularly true when the sequence has already
progressed to relatively low energy conformations near the funnel bottom, where
large steps may be expected to almost always reach higher energy plateaus. The
chosen valueσ = 0.21 was determined by varyingσ until roughly half of the steps
attempted escape the starting catchment basin. Somewhat surprisingly, this value
works acceptably well for all cluster sizes and seems to be uniformly effective over
the entire conformation space for each cluster size. If necessary, this parameter can
be adaptively adjusted as the algorithm proceeds for potentials for which this is not
the case. Note thatN1/2σ , which is the square root of the expected value of‖S‖2,
can be loosely interpreted as the typical ‘radius’ of a catchment basin for cluster
sizeN .

We also experimented with uniform distributions forS, as used in the original
basin-hopping implementation in Wales and Doye (1997), and found little differ-
ence in performance of the algorithm as long as similar standard deviations were
used.

d) The value ofRmax was set equal to 1000. Thus a local minimum was not
declared to be a funnel bottom until 1000 consecutive move attempts failed to loc-
ate a lower nearby local minimum. This value is excessive for the smaller clusters
but necessarily large at the high end of the cluster size range. Generally, adjacent
lower local minima are easily found early in the sequence, but are progressively
more difficult to find as the funnel bottom is approached, particularly for the larger
clusters. It is not uncommon for successive iterates to be separated by hundreds of
move attempts for the larger clusters.

2.4. COMPUTATIONAL RESULTS

A series of numerical experiments followed 1000 randomly initialized monotonic
sequences to the corresponding funnel bottoms for each cluster size in the range
13 6 N 6 110. In most cases a large number of sequences terminated at the
global minimum and reasonable statistics could be generated regarding the frac-
tional global minimum hit rate. It should be noted that experiments on this scale
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Figure 2. Average sequence length from random starting local minimum to funnel bottom as
a function of cluster size.

are extremely time consuming in terms of computational resources, with the entire
series requiring in excess of 5000 hours of CPU time. Thus access to a parallel
computer proved invaluable.

The average path length in terms of number of conformations in the monotonic
sequence is shown in Figure 2 as a function of cluster size. The average is seen to
increase roughly linearly withN to an average sequence length of approximately
24 conformations atN = 110. Thus the scaling behavior of sequence length with
cluster size is relatively benign. Similarly, scaling as measured by the average
number of local minimizations per sequence (not including the final fixed overhead
of Rmax at the sequence end) does not appear to increase faster than linearly with
N , with an average of about 286 local minimizations atN = 30, 844 atN = 80,
and 1256 atN = 110.

For all values ofN the MSBH algorithm found the known putative global min-
imum (and atN = 98 improved upon it, as discussed below) within the sample size
of 1000 sequences. Observed fractional hit rates for the global minimum are plotted
in Figure 3 as a function of cluster sizeN . The fractional hit rates range from a high
of 1000/1000 for many of the small icosahedral clusters to a low of 2/1000 for the
LJ77 decahedral cluster, with similar low rates of 4/1000 and 8/1000 for the neigh-
boring LJ75 and LJ76 decahedral clusters, respectively. Surprisingly, the hit rates for
the larger decahedral clusters at LJ102, LJ103 and LJ104 are roughly an order of mag-
nitude higher than those for the smaller decahedral global minima and not much
different than similarly sized icosahedral global minima. Up to aboutN = 60, the
hit rate is consistently over fifty percent, with exceptional dips to 387/1000 at LJ30,
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Figure 3. Observed probability of hitting the global minimum from a randomly initialized
sequence, based on 1000 sequences at each cluster size.

316/1000 at LJ31 and 123/1000 for the LJ38 fcc truncated octahedron. Thus the
funnel corresponding to the global minimum is relatively wide and easily entered
for the smaller icosahedral clusters. However, even for the icosahedral clusters, the
hit rate begins to drop systematically afterN = 70, suggesting difficulty in finding
the correct funnel as the number of funnels increases.

ForN 6 25, only a single funnel is observed and all monotonic sequences ter-
minate at the (icosahedral) global minimum. The first instance of a multiple funnel
landscape is found at LJ26, where 75 out of 1000 sequences terminate at the best
icosahedral structure with a ‘Mackay’ outer layer, as opposed to the ‘anti-Mackay’
(Doye et al., 1995) surface layer at the global minimum (these surface variants are
also called FC and IC, respectively, in Northby (1987)). A particularly interesting
case occurs atN = 34, where four funnels are observed, each corresponding to
a different geometrical class: 667 sequences terminate at the Mackay icosahed-
ral global minimum, 130 at the anti-Mackay icosahedral funnel bottom, 198 at a
partly fcc structure with tetrahedral symmetry (an analog to the new tetrahedral
LJ98 local minimum described below), and 5 at the best decahedral structure. Note
that these four funnel bottoms are not the four lowest local minima, as there are
several intermediate icosahedral structures. Rather these funnel bottoms are the
lowest members of their respective classes. Thus the MSBH algorithm not only
finds global minima, but also identifies the funneling properties of the landscape as
well as the ‘best-of-class’ local minima at the funnel bottoms.

ForN 6 60, the total number of funnels on the landscape (i.e., the number of
energetically distinct funnel bottoms observed in the 1000 sequences) is observed
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Table 1. Performance of original MCM and new MSBH basin-hopping
algorithms in terms of average number of local minimizations (LM)
required to find the global minimum, number of energetically distinct
funnels found by the MSBH algorithm, and global minimum hit rate for
MSBH.N = 38, 75, 98, and 102 are non-icosahedral global minima; the
others are icosahedral

N MCM LM MSBH LM MSBH funnels MSBH hit rate

20 35 34 1 1.000

30 1140 739 2 0.387

38 2674 2875 3 0.124

40 208 279 9 0.849

50 251 460 7 0.868

60 384 388 12 0.948

70 1527 1526 90 0.630

75 ∼ 107 152000 75 0.004

80 2540 2009 132 0.420

90 3024 4699 198 0.206

98 > 106 180000 210 0.006

100 7610 9128 221 0.122

102 > 106 36028 245 0.031

110 11362 40420 288 0.031

to range from 1 to 12, with the global minimum usually lying at the bottom of the
first or second most commonly entered funnel. However, the observed number of
funnels for the larger clusters quickly climbs to approximately 300 atN = 110,
and a larger sequence sampling size would undoubtedly have found considerably
more. The general trends can be seen in the data in Table 1.

Perhaps the most impressive success of the algorithm is the discovery of a
new global minimum LJ98 with tetrahedral symmetry at an energyE(X) =
−543.665361 that is 0.022404 units below the previous putative icosahedral global
minimum found by Deaven et al. (1996) using a genetic algorithm. The discovery is
quite surprising, given the extensive previous investigation of the LJ microcluster
problem by a wide variety of methods. Details of the structure can be found in
Leary and Doye (1999). The new structure is among the most difficult to find,
with only 6 of 1000 sequences terminating there, and required an average of ap-
proximately 180,000 local minimizations per encounter. The new structure has
subsequently been found by the original MCM basin-hopping algorithm (Wales,
1999) and a new procedure that uses geometrical penalty functions (Locatelli and
Schoen, 1999).

Our implementation of MSBH is easily modified to implement the original
MCM basin-hopping algorithm. Using the values presented in Wales and Scheraga



380 R.H. LEARY

(1999) and Wales and Doye (1997) as well as some experimentation to determine
reasonable values of the parameterT , a series of direct comparisons was made for a
variety of cases spanning the microcluster range (Table 1). The original version was
terminated whenever it hit the global minimum, so the reported number of local
minimizations LM is an average first passage time to the global minimum over
many diffferent random walks. The LM value for MSBH is simply the total number
of local minimizations performed for the 1000 sequences divided by the number
of global minimum encounters, excluding the finalRmax local minimizations at the
end of each sequence.

Neither basin-hopping variant shows a systematic relative advantage in terms
of average CPU time or number of local minimizations between encounters with
the icosahedral global minima. Both are also similarly successful on the LJ38 fcc
truncated icosahedron, requiring an average of 4 CPU minutes and about three
thousand local minimizations per global minimum hit. However for the LJ75, LJ76

and LJ77 decahedral clusters, MSBH is much faster and more successful. The exact
amount is statistically difficult to quantify since our implementation of the original
algorithm, for example, only encountered the decahedral LJ75 global minimum
once in fifty long simulations with a total time equivalent to following 10,000
MSBH sequences. In contrast MSBH found the LJ75 global minimum a total of
42 times in an extended sample of 10,000 sequences, with an average of 152,000
local minimizations between encounters. Similar results for the original MCM
algorithm are noted in Doye et al. (1999b), who report that these decahedral con-
formations are found so infrequently by their implementation that good statistics
for the first passage time have not yet been obtained. Their analysis using discon-
nectivity graphs found that the decahedral funnel is narrow and separated from the
icosahedral region by a large energy barrier. Such a landscape will clearly penalize
the MCM strategy severely.

However, asN increases and the number of funnels becomes larger, the probab-
ility of hitting the correct funnel on any given MSBH descent falls correspondingly.
This may present a more difficult scaling problem for MSBH than the original
version. If barriers between funnels are small, the MCM strategy of climbing over
barriers, but still remaining in a relatively low energy region, gains in efficiency re-
lative to restarting at a high energy. This is perhaps becoming evident for the larger
icosahedral clusters in Table 1, where the original algorithm appears to be some-
what better than MSBH. Also, despite extensive computation, MSBH has not been
able to reach the lowest energy valueE(X) = −1236.124253 for LJ201 reported
by Wales and Doye (1997) with the original MCM basin-hopping algorithm.

3. Conclusion

The MSBH variant of basin-hopping presented here has found all of the previously
known LJ putative global minima in the Cambridge Cluster Database, in addition to
locating a new LJ98 putative global minimum of a novel geometrical class. MSBH
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appears to have an efficiency advantage over the original MCM basin-hopping
algorithm for cases such as the LJ75, LJ76, and LJ77 decahedral structures, where
the global minimum lies at the bottom of a relatively narrow, diffficult-to-find deca-
hedral funnel which is separated from the more dominant icosahedral region by a
large energy barrier. In this case the simple restart strategy employed by MSBH is
a more efficient way of escaping from a funnel bottom and gaining altitude on the
landscape graph than waiting for a low-probability sequence of uphill Metropolis
steps. However, on landscapes in which a large number of funnels are separated
by relatively low barriers, the original version may be expected to spend most of
its time in low energy regions of the landscape graph, passing relatively easily
between funnels. The monotonic sequence version must descend many times from
high energy starts, a possibly much longer process. We hope to investigate this
possibility in future research using parametrically controlled energy landscapes
from other molecular conformation problems.

Both versions of basin-hopping are unbiased in the sense that no prior geomet-
rical knowledge of optimal structures is included in the algorithms. This contrasts,
for example, with methods that search lattices of a particular geometrical class,
such as Mackay icosahedra, and therefore cannot find global minima outside of that
class. Similarly, many of the genetic algorithms applied to the LJ cluster problem
have used seeding strategies that introduce structures within the classes of known
global minima. Unbiased methods may have the best chance of generalizing to
more complex potential functions such as those in the protein folding problem.

The monotonic sequence variant also has the interesting and potentially useful
property of clearly exposing the funneling nature of the energy landscape, and
identifying a variety of funnel bottoms in the multifunnel case. Thus MSBH iden-
tifies not only global minima, but also other ‘best-of-class’ structures on the energy
landscape. This property may be of interest for protein folding problems, where
an accurate energy function with a global minimum corresponding to the correct
physical native conformation is still beyond the state of the art. Rather a simplified
approximate model function is often used, which may not necessarily produce the
single funnel landscape hypothesized for naturally occurring proteins. In this case
the identification of a variety of interesting funnel bottoms may in fact be a more
appropriate goal than simply finding the global minimum.
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